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Calculating the Pressure in Simulations 
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Because it is not immediately clear how to write down a proper Hamiltonian for 
a system in periodic boundary conditions, particularly with Coulombic inter- 
actions, we consider a large, finite array of copies of a basic simulation cell 
containing N particles with some interaction between them. We also put N 
independent copy particles in each of the copy cells of the array and write down 
a constrained Lagrangian for the whole system. Constraints on the velocities of 
the particles of the whole array together with an appropriate initial condition 
implement the periodic structure in the cells of the array of copies. We derive 
a Hamiltonian for the whole system with constraints and then derive the equa- 
tions of motion and a virial expression for the pressure tensor in terms of the 
forces on the system. In the limit as the array of cell copies becomes large, the 
equations of motion become the standard ones used in periodic-boundary- 
conditions simulations. The method also provides an unequivocal algorithm for 
the pressure in this limit in terms of a virial expression. Particular attention is 
paid to the case of Coulombic interactions. 

KEY W O R D S :  Virial theorem; pressure; periodic boundary conditions; com- 
puter simulations. 

1. I N T R O D U C T I O N  

Suppose we have a system of No particles with mass mj and position rJ in 
a container I2 of volume V o. Forces act between the particles and in this 
paper we shall assume that we have short-ranged forces derived from a 
potential ~PsR:j.k(rjk), direct Coulomb forces derived from the pair potential 
QjQ, [ r / - r , I - i ,  where the Qj, I <<.j<~N, are the charges on the particles, 
and "polarization" forces derived from a polarization interaction 
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QjQktPPoe(rj, rk; e'), where e' is the dielectric constant of the continuous 
medium outside f2. This last interaction arises because a charge Ql at rj 6 I2 
polarizes the external dielectric medium and this polarized external 
medium sets up a potential inside f2 which interacts with Qk at r~ ~.(2. We 
shall describe details of ~PPoe(r i, rk; e') below. For the moment we note 
that the polarization force 

FpoL;j(rj, rk; e ' ) =  -QjQkVrjq~POL(rj, rk; e') (1.1) 

does not in general obey Newton's third law. 
The standard way to write down equations of motion and thus carry 

out a molecular dynamics simulation is to start with the equations of 
motion. We may write these for our example as 

N N N 

mji:.,= ~ FsR:j~(r;k)+ ~ FDC:j,(rjk)+ ~ FpoL:,k(ri, rk;e') 
k = l  k = ]  k = l  
k ~ j  k C j  

+ FSURF: i(r/) (1.2) 

where the short-ranged forces are 

FsR ik(rjk) = rjk , -- ~OsR:jk(Irikl) (1.3) 
Ir;kl 

the direct Coulomb forces are 

FsR:/k(rjk)= --QiQkV,, Irjkl ' (1.4) 

and FSURF:j(ri) is the short-ranged force of the container wall 0f2 on the 
particle j. 

There are several problems with this scenario when we do standard 
molecular dynamics. First, how can we define a system in periodic bound- 
ary conditions to which we can apply external forces so as to measure 
response? There is no outside in a really periodic system. Second, how do 
we calculate the forces in a periodic system, especially with Coulombic 
interactions? Finally, how do we identify the pressure and in particular, 
how do we consider polarization interactions? Are they internal or exter- 
nal, do we consider them as internal forces contributing to a virial expres- 
sion or as surface forces contributing to surface pressure? We answer the 
problem of identifying the internal pressure in Section 2. In Section 3 we 
construct a model of a basic simulation cell together with a large, finite 
array of copies of this simulation system. A Lagrangian is written for the 
cell-array system with periodicity implemented via velocity constraints and 
initial conditions. A set of momenta are introduced and the Lagrange mul- 
tipliers for each of the velocity constraints are determined. In Section 4 we 
define a Hamiltonian for the large cell-array system and derive equations 
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of mot ion for the particles in the basic simulation cell. We also apply the 
virial expression for the pressure tensor from Section 2 to the cel l-array 
system. In Section 5 we take the limit of the equations of mot ion  and the 
virial expression of the pressure as the array of copies becomes large. For  
short-ranged potentials [ I~PsR:j.k(lrl )l ~< A Irl - 4 for large enough Irl ] these 
results are those used in s tandard simulations. For  Coulombic  forces we 
are able to make an unequivocal definition of the polarization forces as 
internal forces because the large-array limit of these forces in the periodic 
cel l -array takes a form which does obey Newton 's  third law. The paper  
concludes with a discussion on implementat ion in Section 6. 

2. M I C R O C A N O N I C A L  DEFINIT ION OF THE PRESSURE 

While it is possible to derive a canonical ensemble expression for the 
scalar pressure on a statistical mechanical  system, if we have no polariza- 
tion forces present, it is not so simple to derive an expression for the 
pressure tensor. If we want the scalar pressure, we may consider .(2 to be 
a sphere SR of radius R. We can then find the derivative of the free energy 
with respect to the volume I/o of I2 in the s tandard t reatment  c~'2~ which 
involves differentiating potentials ~b(Rp,, Rp,_) with respect to R. However,  
if we want the pressure tensor, we must know how the polarization poten- 
tials change as the sphere is distorted into an ellipsoid. Such calculations 
involve solutions of Poissori's equat ion in an ellipsoid and in my opinion 
are best avoided. 

Suppose then that we have the system of Section 1. We introduce a 
unit vector fi of fixed direction and then the region co(fi, ()  where 

co(fi, ~ )=  {r E f2: r ' f i > ~ }  (2.1) 

The region co(fi, if) has a curved surface 0co,.(fi, ~) with unit outward normal 
x(r) on &o,.(fi, ~). The region co(fi, ~) also has a plane surface 

D(fi, ~')= {r ~ (2: r" fi = ~ }  (2.2) 

We define 

Z_(fi ,  t '2)= rain [ r . f i ]  and Z+(fi ,  I 2 ) =  max [ r ' f i ]  (2.3) 
r ~ Q  rE.~ 

We note that co(fi, Z ) = ( 2  and co(fi, Z + ) =  ~b. To define the pressure we 
use a method suggested by Hoover.  ~ We consider the momen tum of the 
particles in co(fi, (). This is 

N 

,~(fi,~, t ) = f  d3r ~ 6(r - r i ( t ) )p i ( t  ) (2.4) 
~(fi, t~ ) i =  [ 
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We may evaluate ~(f i ,  (, t) microscopically, in the microcanonical ensemble 
or equivalently from long-time averages of Hamiltonian dynamics, or we 
may evaluate .~(fi, (, t) macroscopically as equal to the pressure forces 
acting on the surface of to(h, ~). By equating the microscopic and macro- 
scopic expressions, we can find a virial expression for the internal pressure 
tensor. This mechanical equivalence serves as a definition of the internal 
pressure tensor in the microcanonical ensemble. If we imagine an instan- 
taneous internal pressure tensor /7(r, t) in the system (for r~12) and a 
surface pressure tensor fTS(r, t) (for r e Of 2), then we have 

d2r fi" fT(r, t)-~,~ d2r ~(r) ' /7S(r ,  t) (2.5) ,~(fi, (, t ) =  fo~.~ .... ~,,;J 

To obtain a virial expression, we integrate Eq. (2.5) from Z (fi, I2) to 
Z+(fi,  f2), using Eq. (2.4) for ~ ( h ,  (, t) on the left-hand side. This gives, 
using integration by parts, 

h d3r nlr, t) + z _  Ih, J" d2r  tr)" nSlr, t) 

- fi "f,,a dzr r~(r) �9 t) 

= ~  - z  (h,~) p.j(t)+~- rj(tlpj(t) 
. j ~ l  j =  I 

We now define the average internal pressure tensor by 

1 
fTIt) =7o J" d3r n(r, t) 

the total external force on the system by 

(2.6) 

(2.7) 

FEx(t ) = -- f,~a d2r "~(r) �9 f'/S(r, t) (2.8) 

and the total momentum of the system by 

N 

P v ( t ) =  ~ p/(t) (2.9) 
i = |  

Notice that we do not assume at this stage any particular relation between 
the internal pressure/-/(r,  t) and the surface pressure/7S(r ,  t), nor shall we 
do so below. We may then rearrange Eq. (2.6), writing I~j(t) in terms of 
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the short-range, direct Coulomb, polarization, and surface forces. For all 
directions fi we obtain 

fi"/7(t) Vo = fi" i'/(t) pj(t) 
i t 

N N 

+ ~ ~'~ rj(t)[FsR:~k(rjk)+ FDc:/~(rjk)] 
/ = l  k = l  

N N 

+ ~ ~ rjFpoL:i(rj, r k ' g )  
/ = 1  k = l  

N } 
+ ~ r / ( t )FsuRv:j(r i )+I ,  " d2rr~(r ) ' /7S(r , t )  

. i =  I f~ 

+ Z (fi, -Q)[FEx(t)-  PT(/)] (2.10) 

Next we introduce the notion of a long-time average of a variable X 
a s  

<x> = 2im. - • ['~ xl,l, , 12.111 
_ toJo 

and define the internal pressure as 

/7= </7(t) > (2.12) 

Now any change of total system momentum must be driven by the external 
forces, that is, by the surface pressure, so that FEx(t)= PT(t) and so we 
have 

N N N [7Vo=(j~__I'J(I)P/(')>~-~<i~=I k~=lrjk[fSR:jk(t/k)~-FDc;jk(rjk)]> 
+ r / ( t )  FpoL;./(r/, r~.; e') 

/ I k = l  

+ =~ r/(t) FSURF:j(rj) + d2rr~(r).HS(r,t) (2.13) 
j I 12 

In the normal course of events, we should be able to identify the last expec- 
tation on the right-hand side of Eq. (2.13) as zero: the surface forces give 
rise to the surface pressure. However, let us consider f2 to be a spherical 
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container of radius R and define r rLyLM(f), where the YcM(r) are 
spherical harmonics in standard notation. ~4 6~ We then have 

L 47t ( L +  l ) ( d -  1) 
tPPOL(rj, rk ; f ' ' ) = -  Z 2 L + l  d ( L + I ) + L  

L = 0  M =  - L  

x R -t2L+ t~0LM(ri) (PLM(rk) (2.14) 

Notice, for example, the self-interaction 

tppoL(ri, r k ; e , ) :  - ~ ( L + l ) ( e ' - l )  _t (.~_xl L 

This looks for all the world like an external interaction which we should 
include in the surface forces in the last expectation in Eq. (2.13). In general 
the polarization forces on j due to k and on k due to j do not obey 
Newton's third law, because of their origin in interactions of both particles 
with the external dielectric medium. However, we shall see below that in 
the periodic boundary condition structure that we establish, these pairwise 
polarization forces do obey Newton's third law and so it is entirely 
appropriate to include them in the internal forces. When we ignore the 
last expectation of Eq. (2.13) as described above, we then obtain a virial 
expression from Eq. (2.13). 

3. THE LARGE CELL ARRAY AND ITS CONSTRAINED 
LAGRANGIAN 

We consider first a simulation cell F ( 0 ) = { r : - L / 2 < ~ r . a , < ~ L / 2 ,  
ct= 1, 2, 3}, where the at, a2, a3 are three noncoplanar vectors with which 
we generate a lattice A {n= 3 = ~=tn~La~, (n l ,nz ,  n3)E7/3}. The volume 
of this central simulation cell is VA = L  3 [at "a2xa3l. There are N point 
particles of mass mj at r je  F(0). We assume that pair interactions r ) 
act between the particles. We then construct a large but finite array 
of copies F(n) of F(0). The copies F(n) are {r: r - n ~ F ( 0 ) }  with n =  
y,3= ~ n~La,, and so the copies also have volume VA. The set CR is a finite 
but large array of vectors n E A, and we shall also use Cn to refer to the 
region contained in the cells F(n) for which n e CR. The linear dimensions 
of this region will be assumed to grow linearly with R. We shall generally 
use the region Sn(A), which is all the vectors n~A for which In I ~R ,  but 
other shapes are possible. In each cell F(n) of the array Cn we put N copy 
particles of mass mj at R(j, n), 1 ~< j~< N. We define R(j, 0) = U- The poten- 
tials r act between all the particles in the entire array. It is convenient to 
introduce r(~t, j, n) via 

3 

R ( j , n ) =  ~ ~r(ct, j , n )  (3.1) 
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so that {r(a, j, n), 1 ~< a ~< 3, 1 ~< .]~< N, n e CR} are the coordinates of all the 
particles in the entire finite large array of copies of the original simulation 
cell. We also assume that there is a short-ranged single-particle surface 
potential Ctj(rj) acting on each particle. 

The unconstrained Lagrangian for the whole system is 

3 N 

Z Z E m/(a,J,") 2 
~ t = l  j = l  n ~ C R  

N N 

- 2'- E E E E* n,), R(k, n2)) 
] = 1  IIIEC R k = l  n 2 ~ C  R 

N 

-- ~ Z r (3.2) 
j =  1 n ~ ( ' R  

and the asterisk on the sum means we omit singular self-interactions. To 
implement the periodic boundary conditions, we introduce DR= Cg\{0} 
and then insist on the constraints 

f(a,  j, n) = r(u, j, n) -- r(cq j, 0) 

-- n-~:,=0,  l --.< a --.< 3, I<~j<~N, n ~ D  R (3.3) 

In the analysis below the techniques of De Leeuw et al/7j are adapted 
directly to these "periodic" constraints. We replace these constraints by the 
velocity constraints 

d 3 N 0f(a, j, n) 
~ . f ( ~ , j , n ) =  E 2 Z i(fl, k,n')o,.(fl ,  k ,n ,  ) 0 

f l = l  k = l  n ' ~ C h '  
(3.4) 

for 1 -..< a -..< 3, 1 <~j<~N, n ~ D  R 

together with the requirement that in the initial conditions for the whole 
system, the constraints of Eq. (3.3) hold. 

The constrained Lagrangian is then 

3 N 

LP*=�89 Z Z Z mii'(c~,J,n)'--U({r(c~,J,n)}) 
~ t = l  j = l  n ~ C R  

3 N 

+ Z Z Z ~,(fl, k,n') 
f l = l  k = l  n ' ~ D  R 

3 N 

• Z Z Z t : (a , j ,n)Of(f l 'k 'n ' )  (3.5) 
~=l j=, .~c ,  Or(a,L n) 
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where 

N N 

U({,-(a,j,n)})=�89 ~ Z Z Z*~J*(R(j ,n , ) ,R(k,  n2)) 
j = l  n l e C R  k = l  n 2 E C R  

N 

+ 2 2 ~bu(R(j,n)) (3.6) 
j = l  n e C g  

We can simplify this constrained Lagrangian using 

Off~, k, n') 
Or(cq j, n) 6"t~6s*{6"'"'[1--~"'~176 (3.7) 

so that 

3 N 

"s189 Z Z Z mfl:(cqJ, n)2-U({r(cqJ, n)}) 
~ = l j = l  neCR 

3 N 

+ Z Z Z y(ct, j,n){f(=,j, nl--i(ct, j,O)} 
a = l  j = l  n e D R  

(3.8) 

To begin exact implementation of the constraints in a simpler system 
of equations, we define momenta in the standard way: 

p(cq j, n) = O~a*/0:(cq j, n) 

This gives 

(3.9) 

p(a, ./, n) = mfl:(a, j, n) + "y(a, j, n)[1 -- 6.,0] -- 6..o 
n ' E D  R 

which we may reorganize as 

f(~,J,n)=-~-~Tj{P(~,J,n)-Y(oqj, n)[1-6.,o]+5.,o 

' n '  y(a, j, ) (3.10) 

?(a, J, n')} 
n' E O R 

(3.11) 

We can use this result and Eq. (3.7) to rewrite the velocity constraint equa- 
tions in the form 

p(~, j, n)-- p(c~, .j, 0 )=  M(n, n') 7(~, j, n') (3.12) 
n'E D R 

where 

M(n, n')= 1 + 6.,,. (3.13) 
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We now define ~:t,J~ as the number of cells in the large array, so that DR has 
,.t,~- I members. Thus we may show that 

1 
M-l(n ,  n') = 6..., .+~ (3.14) 

by a simple matrix multiplication. Equation (3.12) then gives 

I 
p(~, j, n') y(~, j, n)= p(=, j, . ) - - 7  .% 

n ' E C  R 

for l~<ct~<3, I<~j<<,N, and n ~ D R  
(3.15) 

With minor differences for n:/:0 and n = 0 ,  we may then use Eq. (3.11) to 
find 

1 
= ~ p(ct, j , n ' )  for l~<ct~<3, I<~j<<,N, and n~DR 

:(~, j, n) mj.~R .'~cR (3.16) 

We note then that i'(~, j, n)=i '(~, j, 0) for all (~, j) and for n E DR. This, 
together with the initial condition, implements the periodic boundary con- 
dition. 

4. THE H A M I L T O N I A N ,  EQUATIONS OF MOTION,  
AND PRESSURE 

Here we continue to follow the constraint dynamics techniques of 
De Leeuw et aL ~7~ We define the Hamiltonian in the standard way as 

3 N 

~'~= Z ~. ~. f(ct,./,n) p(~t, j ,n)-- .LP (4.1) 
~ t = l  j = l  n~CR 

We use the Lagrangian L# here rather than the constrained Lagrangian ~ *  
since we shall eliminate the : '(~,j ,n) from the Hamiltonian using 
Eqs. (3.16). When Eq. (3.16) holds we have L,a=L# *. The Hamiitonian 
reduces to 

J : =  p(~, j, n) U({r(~, j, n)}) (4.2) 
, =, j=, 21n]~Jl:R . , 

The initial conditions for the dynamics defined by this Hamiltonian are: At 
t = 0  

r(ct, j ,n)--r(ct ,  j, 0 ) - - n - ~ , = 0 ,  l~<ct~<3, I<~j<~N, n ~ D R  (4.3) 

822/77/I-2-31 
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First we obtain, for 1 ~< c( ~< 3, 1 ~< j ~< N, and n ~ Ca, 

':(~ ,nj.l:~ ~" p(~, j ,n)  (4.4) 
n ~ CI;. 

Thus the Hamiltonian dynamics from Eq. (4.2) indeed implies 

i'(~, j, n) = f(~, j, O) (4.5) 

We may integrate these equations and apply the initial condition to obtain 

r ( ~ , j , n ) - r ( ~ , j ,  0 ) - n ' 6 ~ = 0 ,  l~<ct~<3, I<<,j<~N, nEDR for t~>0 

(4.6) 

The Hamiltonian with Z# in Eq. (4.1) thus gives a dynamical evolution in 
which the periodic boundary conditions are implemented. Equation (4.4) 
brings with it the appealing physical picture of each particle j in the 
original simulation cell F(0) behaving as though it had mass m/A~, the 
mass of all the copies of j in the whole array. 

The second set of Hamiltonian evolution equations are 

0o,~ O U 
/)(ct, j, n) (4.7) 

Or(~, j, n) 0r(~, j, n) 

so that 
OU 

/~(~, j, n) = -- ~ (4.8) 
0r(~, j ,  n) nffCR nECR 

Using Eq. (4.4) then gives 

1 ~ U  
mji:(ot, j, n) = m//:(~, j, O) = --,.4---~R .~cR c3r(o~, j, n) 

Using r /=  Z~ = ~ ~r(~, j, 0), we can then write 

N 

mjij= FSURF:/(rj) + E* FJk(rJ, rk) 
k = l  

where 

1 
F s uRv : / ( ry )= - - - -  Y' V~bv(n+r/) 

1 
V, (rj, r , )  = Z Z •j, In, + r,, "2 + rk) 

~IE("R n2EC R 

(4.9) 

(4.10) 

(4 .11)  

(4.12) 
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and the asterisk on the sum in Eq. (4.10) means we omit singular self-inter- 
action terms when j=k and n~ = n ,  from the double lattice sum in 
Eq. (4.12). Using these representations for FsuRv:j(rj) and Fjk(rj, r~), we 
have that Eq. (4.10) represents the equation of motion for the finite but 
large periodic cell-array. We shall see below that the equations of motion 
reduce to rather standard forms in the limit as the array becomes large. 

We may now turn to the pressure of the large array, remembering that 
the surface forces -V~btj(n + rj) tend to zero quickly as the distance on n 
from the boundary of the cell-array becomes large. We note that Vo= 

I~V..f{ 1 + O(1/R)}, where Vo is the volume of the whole region/2 contain- 
ing the cell array, . I.~ is the number of cells in the array, and V j is the 
volume of one cell. With the notation p(j, n) =Y'~= ~ ~p(~,j, n), Eq. (2.13) 
becomes 

/7. I~ V.~ 

(N / 
- - -  ~ ~ ( n , -  n: + rjk)Vr,~bSR:jk(n , - n2 + r/k) 

2 i I k = l  h i t C h ,  n 2 E C R  

- -  ~ ~ ( n , - n 2 + r / k ) V r ,  QyQk I n , - n _ , + L ~ l - '  
2 j I k = l  n l E C R n 2 ~ ( ' R  

+ 2 ~ Y'. (n, + U) FpoL:i(n, + L' n2 + r~; d) 
j I k = l  n l f f C  R n 2 E C  R 

+ ( L  ~ (n+r j )  FsuRF:j (n+r iJ+J  ", d2rr'(r"/7S(r't)) 
j =  l n E C I r  ~s 

(4.13) 

We may find the scalar pressure H by taking one-third of the trace of both 
sides of Eq. (4.13). There are five expectations on the right-hand side of 
Eq. (4.13) and we identify them in turn as /7u., t~ V.,~, the kinetic energy 
contribution, /TsR,'I R V,I, the short-ranged force contribution, HDC-~'R VA, 
the direct Coulomb interaction contribution, Hpo,~VR VA, the polarization 
force contribution, and a contribution from the surface forces and surface 
pressure. Note that we do not yet have a way of deciding how to allot the 
HpOL contribution between internal pressure H(r, t) and external pressure 
on the surface, HS(r, t), because the forces FpoL:i(n ~ + r i, n 2 + rk ;d )  giving 
rise to /7pot do not obey Newton's third law. 
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5. THE LIMIT AS THE ARRAY BECOMES LARGE 

First we look at the equations of motion given in Eq. (4.10). Equation 
(4.10) shows the surface force as 

1 
FsuRFzi(r.i)=- 4.-~n Z V~btj(n+rj) (5.1) 

�9 n ~  ('a 

From here on we shall consider CR to be the sphere SR with center 0 and 
radius R. As the array becomes large we have R---, ~ and we also have 
Vo=~*~VA[1 +O(1/R)]. We consider the one-particle surface potential  
~btj(r) to be of the form $ i ( R f -  r) with ~bj independent of R and ~b/(p)--* 0 
as IPl ~ m,  so that we may indeed interpret r as a surface interaction. 
In Eq. (5.1), the factor 1/~4n is O(R -3) while the sum of surface forces is 
proport ional  to the surface of SR and so is O(R2). Thus FsuRv:j(U) 
vanishes in the limit R ~ oo. The equation of mot ion for r i [Eq. (4.10)] has 
no surface force term in the limit R ---, oo. 

The pair force Fyk( U, r~) is derived from short-ranged interactions, 
polarization interactions, and direct Cou lomb  interactions. The short- 
ranged force is 

1 
F s R : / ~ ( r / , r k ) = - -  i ~ V ,  , ~ ~ ~bsR:ik(nl--n2+rjk) (5.2) 

n l ~ S R  n 2 E S R  

Now if the potentials ~bsR:ik(r) are "short-ranged,"  they are O(Irl 4) as 
Ir l-- '  ~J. Thus we may substitute n for n~-n_,  and sum over n over the 
whole of the lattice A, also summing later over n i e SR, which gives a factor 
. t~ ,  this procedure having an error which is O(R ~) compared  with the 
result. We thus have, in the limit R --, oo, 

~ksR:ik(ri~) = ~ ~bsR:jk(n + rik) (5.3) 
n E  ,-I 

and 

FSR:i~(r., ' r k ) =  --Vr,~SR;jk(r#:)= -- E Vr, q~SR:i,~-( n + r/k) (5.4) 
f l E A  

The total polarization force on particle j may be written using Eq. (2.14) 
as 

F _ 3V~ ~- 4~ ( L + l ) ( d - 1 )  
P ~  d ( L + I ) + L  

x ~. ~ QiVq~LM(n,+ri) R ,,. t, 
/ t ' l  = L n I E S R 

x 2 ~ Q~[~ot.M(n2+r~.l_~oLg(n2l]R L 
k = l  n 2 E S  R 

x[,+o(_;)] is. , 
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In the last large bracket  in Eq. (5.5) we have inserted an extra term inde- 
pendent of k, a manipulat ion which does not change the result because we 
always assume a charge neutrality condition 

N 

Qt- = 0 (5.6) 
k - I  

without which we cannot  define electrostatic interactions in the array in the 
limit R ~ ~ .  Now 

N 

~ O~[q~LM(n2+rk)--~OLA,(n2)] R L 
k =  I n 2 ~ S  R 

= - - Y ' .  ~ Ok ~o,_M p ( n ) + ~ - ~ o L , ~ t ( p ( n ) )  (5.7) 
V !  k =  I p ( n ~ S i  

where p ( n ) = n / R  and $1 is a sphere of radius 1 with center 0. The 
right-hand side of Eq. (5.7) contains a sum approximat ion  to a Riemann 
integral over $1 and so we have 

N 

~. ~. at.[~pt,,u(n2+r~.)-cpt.M(n,)] R i. 
k = l  n 2 ~ S R  

fs = - - M "  d3rV~0LM(r)[l +O(R t)]  (5.8) 
r . i  i 

where 
N 

M =  ~ Okrk (5.9) 
k = l  

is the total dipole moment  of the particles of the original simulation cell 
1 

F(0). If we introduce the "spherical basis ''~4~ 6 1 -  ( 1 , - i ,  0), 60 = 

(0, 0, 1 ), and 6 I - x/r} ( I, i, 0), we then have 

Is d3rVq~LM(r) = 6L. 16*s (5.10) 
1 

and similarly we have 

V(pt_M(nt+r~)R IL t~ 
nl  E S R  

- d3rVgocM(r)[1 +O(R i)]  
V . 4 ,'r i 

= 7 .  6 ~ . 1 6 " , [ 1 + 0 ( R  ')] (5.11) 
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Thus in the limit R ~ ~ we have 

4n 2 ( e ' -  1) u 
FpOL:j 3V, 2e' + ~  Qj ~ Qkr~. (5.12) 

-" k = l  

and the apparent failure of the polarization forces to obey Newton's third 
law is particularly clear. However, because of the charge neutrality con- 
straint ['Eq. (5.6)] we can write 

4n 2(e' - 1 ) N 
FpOL:/-- 3V., 2e' + ~  Qj ~ Qkrjk (5.13) 

�9 k = l  

and so identify pair polarization forces 

4n 2(e'-- 1) 
FpoLjk(ri, r k ; e ' )=  3VA 2 e ' + ~  Q iQkrjk (5.14) 

Thus we have a pair polarization force in the central cell of periodic 
boundary conditions (and indeed in any other cell) for which Newton's 
third law holds. We shall see below that similar considerations hold for the 
polarization force contribution to the virial expression for the pressure. 

The remaining force term in the equations of motion is due to the 
direct Coulomb interactions. We may derive this force from the direct 
Coulomb energy of the whole array, namely 

N N 

UDc({r I ..... r N } ) = t E  ~ ~ ~ * Q / Q ,  l n , - n _ , + r i k l - '  (5.15) 
j = l  k = l  n l e S  R n 2 6 S  g 

To evaluate this double lattice sum, we note the identity 

1 erfc(ct Ir l)+l_f~ d3u e ~'-~'-"~" 
I r [ -  Ir[ n 3 U2 e 2hi"'" (5.16) 

which may be reasonably easily established. ~81 We then introduce the lattice 
~' reciprocal to A with lattice vectors m such that exp(2nim" n )=  1, and 
we introduce the cells "~,(m) of the reciprocal lattice. With m = ~ ] =  ~m~A, 
and A, =L2a2 x a3/VA etc., we have 

),(0) = {ue R3: - � 89  �89 ~=  1, 2, 3} (5.17a) 

and 

),(m) = {u e R3: u -- m e ),(0) } (5.17b) 
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We may then split the integral in Eq. (5.16) into a sum of integrals over the 
~,(m), in each "~(m) substituting u = m + v with v ~ ~,(0). We then obtain 

1 erfc(~ Irl) e - n2(m + v )2/r 
+ ~ 1 f. d3 v e2ni v.re2nim, r 

Irl Irl , , E ~  ,,~o~ ( m + v )  2 
m=#O 

1 e - 'T2 v -' / ~ ' 

+ - - f  d S v  e 2niv'r (5.18) 
V 2 7~ d~,(O) 

When we insert this rather complicated expression for InE -- n,  + rj~l - ~ into 
Eq. (5.15), several interesting things happen. The sum of complementary 
error functions may be estimated by setting n ~ -  n2 = n: the double sum is 
then .A~ times a sum on n ~ A with an error which is O(I /R)  because the 
summand is absolutely and rapidly summable on A. The sum of Fourier- 
series-like terms with m # 0 may be estimated by noting that if used in an 
integral for which the rest of the integrand is smoothly varying in the 
components  of v, then 

~ exp(2rHn.v)=r-T-6(v)  1 + 0  (5.19) 
n~S/~ 

on y(0). We can then do the sum over n2 using this formula and then the 
sum on n t to obtain 

~. QjQkt~E,ata(rit.) 1 + o Uoc({r, ..... r N } ) = ~  J ~  ~, * 

j = l  k = l  

N 

- E o) 
JT"[  j = l  

N e t~2v2/~t2 

N ~ •  d3v v2 e -2 '~ i* ' '  
-4- 2-~j=1 k = l  ,(o1 

where 

• Z e2'~i""" Z e-2"i"2* (5.20) 
[lIES R n2E S R 

qJEwa,d(r)= ~ erfc(c< I n + r l )  e - ' r ' m : / ~ - '  
.I I n + r l  + ~ 7cm2VA exp (2x im . r )  (5.21) 

nE raG J# 

is the standard Ewald potential. 18~ The asterisk on the double sum of the 
Ewald potential in Eq. (5.20) means that when r = 0, the n = 0 term in the 
sum of complementary error functions in I/,/Ewat d m u s t  be replaced by 

lim erfc(~r)__ 1 = ___2c< (5.22) 
r ~ O  r r k//-~ 
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to exclude the direct self-interaction of a charge with itself but include the 
interactions of charges with their own periodic copies. To evaluate the last 
integral terms in Eq. (5.20), we expand the factor e x p ( -  n2v2/c~2+ 2niv" Uk) 
in powers of v. The zeroth- and first-order terms are divergent as R--+ oo, 
but vanish by charge neutrality. Third-order and higher terms give a 
smooth integrand, zero at v = 0, for which the representation (5.19) may be 
used for the sum on n 2, giving a total which is O(.,~'R/R). The second-order 
terms may be evaluated using the symmetry arguments of refs. 8 and 9. The 
final result is 

Uoc({r, ..... ru}) 

= -~; 12,=, ~ k=,E*OJQk~Ew~'d(rjk)'v _o~V/_nj ='E Q~ + ~ . ~  M - ' 2 n  

x [ l + O ( 1 ) ]  (5.23) 

We thus find in the limit R --+ oo 

N 4n 
F~ re )=  -- ~ QjQkV~Ewa'd(rjk)--'J-'~A QjM (5.24) 

k = l  
k # j  

In the limit R --+ oo, the equations of motion are then 

N 

mjrj= -- E rv~//SR:jk(rP,) + QYQkVt/IEwald(rjk )] 
k = l  
k # j  

N 

+ ~ FM^c(rj, r~) (5.25) 
k = l  

where 

4rt 
FMAC(r/' rk) -- VA(2d + 1 ) QjQArE- rk) (5.26) 

This completes the description of molecular dynamics in periodic boundary 
conditions with Coulombic interactions. We now turn to the pressure 
tensor. 

The kinetic energy contribution to the pressure tensor is then, using 
r(j, n ) = r ( j ,  0), 

& , . . G  v~, = ~ t(j, . )  p(j, . )  (5.27) 
i I nECI~ 
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Using Eq. (4.4) to first replace r(j,  n) by r(j,  0) and then replace the sum 
of momenta,  we find 

/"]kin V A  = In i f ( j ,  0) f(j ,  0) 
j i 

We may also write 

Hkin VA = 
j l I~l.i n �9 CR n �9 CR 

(5.28) 

p(j, n) )  / (5.29) 

but Eq. (5.28) seems physically more transparent. Note  that we do not 
have p(j, n ) = m j f ( j ,  n), the canonical momenta  for the limiting periodic 
system being more complicated. In deriving Eq. (5.28) we have used V o = 
~('R VAIl +O(1/R)], so that Eq. (5.28) holds exactly in the limit R--, ~ .  

The short-ranged potential contribution to the pressure tensor is 

F/SR V, JVj~ 

= - - -  ~ ( n l -  n2 + rj~.)V~bsR:jk(nl- n, + rik) 
2 j i k=l nlESRn2ESR 

(5.30) 

Because n V~bsR:jk(n ) is absolutely summable on n :~0 (basically the defini- 
tion of a short-ranged potential), we can write the sum on nj and n, as o liR 
times a sum on n = n t - n 2 e A  with an O(I/R) error, giving in the limit 

= ~ ~*(n+rit.)V~SR:jk(n+rjk) (5.31) /7sRVA - -2  j i~-=1,~1 

The polarization interaction contribution to the pressure tensor is 

[Tpo L V" A ~,R 

= ~ QJQ~ ~, E ( n , + r j )  R - '  
j i ~=t ,,,sR ,,:~sR L=0 M= -z  2L + l 

( e ' -  1 ) ( L +  1) ) 
x e ' (L+l)+L R-LVr'~PLM(nt+rj)  R-L~P*M(n2+r~) (5.32) 

We may simplify this in the same manner  as the polarization force, replac- 
ing the sums by integrals to obtain the leading-order behavior in R with 
O(I/R) corrections. From Eqs. (5.8) and (5.11) we find an expression for 
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the sum on k and n2 in Eq. (5.32) which contains a factor 6c.j. Thus we 
have 

/'7poL V A o+~ 

=____R {4rt'~3/2( ~ 2 ( e ' - l )  
V,, \ 3 / g - ,  M'~M 2~'+----"'~ 

X ~ ~ Qj{(n+rj )V~p,g(n+rj ) - -nVcpng(n)}  1 + O  
n e S g  j =  I 

(5.33) 
To evaluate this, we require 

fs d 3 r M V ~ P t M ( r ) + r M ' W ~ p t M ( r ) =  M e *  (5.34) 
1 

We show this by noting that the integrand is M.V[rVcp~M(r)], using 
Gauss' divergence theorem, noting that f f =  �89 IYoo(~) plus Yzg(r )  
terms with L = 2 (here I is the unit tensor) and calculating the remaining 
integral. We then have, in the limit R ~ oo, 

4x 2(~' - 1 ) 
17poL V,~ - -  <MM> (5.35) 

3V A 2e '+  1 

We may now answer the question which we raised earlier, whether to treat 
this contribution as that of an internal force in the viriai expression for the 
pressure tensor, or as that of an external force which should be included in 
the last expectation of Eq. (2.13). That expectation is a balance of the time 
average of contributions of the moment of the microscopic surface forces 
with the moment of the macroscopic surface pressure force contributions. 
We use charge neutrality to write 

rjk FpoL:jk(r/, rk; ~') (5.36) /TpoL VA = 2 j 1 k = l 

where the forces FpoL;jk(rj, r~;e') are precisely those identified in 
Eq. (5.14) as giving the polarization pair force in the final equations of 
motion, and which obey Newton's third law. This means that we should 
include all of/TpoL VA in the internal pressure tensor. It appears that there 
may still be polarization force contributions to Eq. (2.13) about which it 
seems difficult to decide whether they should be considered as internal or 
external forces. The point turns out to bc unimportant, for their contribu- 
tion is O(1/R)  in Eq. (2.13) and so the problem goes away in the limit 
R --* oo. 
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The direct Coulomb interaction contribution to Eq. (2.13) is 

FIDcVA.'I:~= --- ~ ~ ~ QjQk(nl--n2+rjk) 
j = l  k = l  n I e S R  n2ESR 

x V I n l - n 2 + r : l - 1  / (5.37) 

To deal with this cumbersome object we use the identity (5.16). The com- 
plementary error function term then gives a "real-space" contribution to 
/-/DC which is, in the limit R ---, oo, 

v l(=~ ~. (n+r:)(n+r:) 
nDc:Ro.~ " = 2 Y" (n + r/k)" 

j 1 k = I n ~ / I  

,[erfc(~ I__n + _r: I ) 2~ ~ "~\ 
x t- ---= exp[  - ~ - ( n  + rik)-" ] 

( In + rid x/rr J /  
(5.38) 

The remaining part is more complicated, but is treated along the lines 
analogous to those used for the direct Coulomb forces in the equation of 
motion. We have 

DC;F~ - - 2  i I 

N 

Z Z QjQk(n,-nz+rj~.) 
k = l  h I E S  R n2c-S R 

Vrs P - n2u2/~2 1 x f d3u ~ , e 2rau'lnl-n'-+rjk) (5.39) 
7"[ -rR~ U- 

There is no asterisk on the sum here because the summand is zero for j = k, 
n~ =n2 .  We may write 

(nl - n2 + rjk) Vr, exp[2rtiu �9 (n I - n2 + rik)] 

= V.{exp[2n iu  �9 (nl - n2 + rjk)] }U (5.40) 

and then use Green's theorem on the integral. This is not entirely 
straightforward, because of the singularity in the integrand at u = 0. If we 
excise a small sphere about  u = 0 before using Green's theorem, it is easy 
to show that the singularity does not contribute. We then use the stratagem 
we introduced earlier of dividing [~s into cells y(m) with m E ~ .  For  the 
m e : 0  terms we use Eq. (5.19) for the sum on n,. We then obtain 
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l ( __~ N ( 27r2mm 2mm.~ 
/7DC:Vo,nc , V..,.I~ = 2" ! k kY. QiOk .,~ I , - ~  ) 

i 1 -= .~r mr 

- - =  [ x 7rm-VA exp(2~im'r~k) 1 + 0  

+ /TM .... V.,. I)~ (5.41) 

where 

1 E QiQk E d3v 
F/M . . . .  V . t .  I ' ~  = ~ i i , = l . .  ~ s ,  . . , ,  .sR .,.1ol 

0 rr2v2/~t2 

X - -  e 2 a i r "  rlk 
v 2 

( 27r2vv 2~2v)eem,. ,m n" + rt,~ 1) x I -  -~ (5.42) 

To evaluate this final contribution for large R, we expand 
exp(-rt2v2/~2 + 2rtiv �9 rjk) in powers of v with only quadratic powers giving 
an O(R ~ contribution, as with the forces. In the expansion, only the 
term +4rd(v" rj)(v, rk) survives to O(R~ After we convert the sums on n t 
and n 2 to integrals, and replace },(0) as the range of integration by R 3 
[processes which cause an error which is O(I/R) with respect to the 
result], we obtain 

, ( 3  

X (2/r)3 3d3v ~ - y ( l - ~ ) -  

x ) 

d-~ -112 

(5.43) 

The Fourier transforms which appear here are standard and this expression 
then reduces in the limit R ~ oo to 

/7M .... V~ = d-p, [ M - V 0 , ] [ M "  Vp, ] 
I 

X YSI d2p2 (Pl --P2) VpIIPl - - P 2 ] - I )  (5.44/ 
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Using the standard spherical harmonic expansions of [p~- P21 -~ and the 
result (4~ 

b =  ~ e,, Y,,,(I~) (5.45) 
i t =  - 1  

we amy, with a little effort, evaluate these integrals to find 

2n 8n 
/7M ..... V., = ff-~.~ (M2> I - 1 ~ .  ~ ( M M >  (5.46) 

We can now write the direct Coulomb and polarization contributions to 
the virial expression in the limit R ~ ~ as 

1 ~ Q,Q~-GEw,,Id(rik) /Tco . i  V.., = ~ ~ i ~- = i 

2~ 
- - - ( 4 < M M >  - 3 ( M - ' >  I) 

15V~ 

4re 
- ( M M >  (5.47) 

V d2e '  + 1 ) 

GEw.Jd(r )  = 
n(~A 

where 
(n + r ) ( n +  r) 

( n + r )  2 

)'erfc(c~ I__n +r jk l )+  2c~ exp[-c~-~(n + 
• 

I In + rikl 

+ ~ ( i _  2rc2mm.~ 2m~sm ) 

r e : g 0  

d n2m2/:t2 

• n m 2 V  t e x p ( 2 n i m . r )  

ri ~ )2 ] } 

(5.48) 

We may now conclude by writing the total virial expression for the 
pressure tensor as 

j I 

l ~, [ ( n + r i k ) V q k s a . i k ( n + r i ~ . ) _ Q i Q k G E , , . ~ l d ( r i k )  ] 
2 , J k = ~ , * . ~  " " 

2t~ 2zc(2e' - ! ) 
- - -  (3< MM> - (M2> I)+ ( M M >  (5.49) 

5 V I V .d2e '  + ! ) 
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In writing this final expression, the periodic virial theorem, we have 
assumed that in our periodic-boundary-condition array construction the 
surface pressure /Ts is entirely due to the short-ranged forces, so that the 
last long-time averages in Eqs. (2.13) and (4.13) are zero. This virial 
theorem in Eq. (5.49) finally provides us with an unequivocal algorithm for 
the internal pressure tensor from a molecular dynamics simulation. 

6. DISCUSSION 

One problem which has not been mentioned so far is the problem of 
point dipoles. If we have a point lUt i on particle j, then the pressure tensor 
is that in Eq. (5.49) with Qj replaced by Qj+l t j .Vr j  and the Qjrj contri- 
bution to M is increased by lttj. Similar appropriate changes must be made 
to the kinetic energy contribution and the equations of motion must be 
extended by the same considerations so that they will also describe the 
rotational motion of the dipolar molecules. Implementation with polar- 
izable molecules will be rather more complicated if point polarizability 
models are used. Other problems also arise with extended molecules 
because of the possibility that a molecule may be part in F(0) and part in 
one of its nearest neighbors. These last questions are not discussed in this 
paper, but the framework for settling them has been provided. 

In implementing this algorithm for the pressure, the normal methods I11 
for choosing the parameter ~ for optimal numerical performance should be 
followed in the dynamics and in evaluating the expectations of G Ewa~d(rjk). 
For the short-ranged force contribution we should recall that the dynamics 
is normally implemented via the minimum image convention and accord- 
ingly it seems appropriate to use ~jk V~SR;jk(Fjk) in place of the lattice sum of 
short-range interaction contributions in Eq. (5.49). Here ~jk is the minimum 
image form of rjk. That is, ~jk = no + rjk, where n o is that lattice vector which 
makes IFjkl minimum. 

We may now consider the scalar pressure H = -~ trace/7. First we look 
at the short-ranged force contribution. For potentials ffSR;jk(rjk) which 
depend only on Irjkl, we have 

a r=l,+ (n + rio)" V~srt:jk( n + rjk) = r~-~r ~SR:yk(r) (6.1) 

This gives a fairly simple lattice sum for any such potential, especially 
simple when the lattice sum is replaced by its minimum image term. For 
potentials A ik Irjkl-P with p >/4, we may define the short-ranged energy 

1 /v N 
Up({r, ..... r N } ) = ~ . = l  k=i ~ .~A~*AJ~ In+r /~l -"  (6.2) 
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and then we have 

2 ; 

N ) 
~ * ( n  + rjk)" V~,Aik In + b , I - ,  

k =  I n c A  

= p ( U p ( { r ,  ..... rN}))  (6.3) 

which is a particularly convenient form for Lennard-Jones  interactions. For  
the Cou lomb  interaction we have 

25 
trace GEwald(r ) = @Ewald(r) + -  Z exp[  - ~'-(n + rj,) 23 

Nr n E A 

"V exp c~ 2 exp(2rrim �9 r) -- 1 (6.4) 

We may ignore the - 1  in the last bracket  here by charge neutrality. The 
sum on m e ~ is well defined and absolutely convergent and uniformly con- 
vergent in r. This is quite unlike the case of lattice sums with factors 1/m 2, 
for which we may not use the Poisson summat ion  formula directly. For  the 
sum in Eq. (6.4), we may use the Poisson summat ion  formula. It then 
exactly cancels the sum on n in Eq. (6.4). We also note that 3 M M - M 2 1  
is traceless. Thus the scalar pressure virial theorem reads 

rnjf(j, O) 2 1 = rJk" Vr, ~SR:jk (~Jk) 

l ( _ ~  N ) 2~(2e'--1 )(M2) (6.5) 
~" QJQk~bEwa'd(rJ~') + 3 V ~ ( 2 e ' + l )  

+ 6  i i t,=t 

Finally we must consider the value of e' to be used. It usually makes sense 
to take the limit e' --* oo, for then the equations of mot ion have no square 
dipole term. Also, the equat ion for the scalar pressure becomes simpler. 
For  some simulations, particularly of dipolar  systems, where the mean 
square dipole moment  is needed accurately for dielectric constant  estima- 
tion, it appears  that it is sometimes useful to use a finite value of e'. This 
may improve the rate at which the t ime-averaged mean square dipole 
moment  converges to its long-time limit. In either case we must use the full 
catas t rophe of Eq. (6.5) and an equation of mot ion [see Eqs. (5.25) and 
(5.26)] which contains forces proport ional  to M if e' is finite. The M we 
use in both the dynamics and the pressure averages must be the dipole 
moment  of  those particles which were in F(0) at the start of the simulation. 
Only by doing this can we avoid discontinuities in the forces when a par-  
ticle moves out of one face of F(0) and reenters by the opposite face. That  
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is simply a computing time cost that we must pay to avoid excessively slow 
convergence of the square dipole moment  averages. What  this tells us 
about the original dynamics is that the particles do not stay inside their 
respective copy cells F(n), but stay "associated" with it. 

This mean square dipole moment  term which remains in the pressure 
tensor of Eq. (5.49) in the limit e'---, oo is very interesting. It is the only 
example I know where the mean square dipole moment  terms inherent in 
the conditionally convergent lattice sums which arise in periodic-boundary- 
condition simulations cannot  be induced to go away by some construction 
or another when we use a spherical lattice sum summation order. It should 
be noticed, however, that no amount  of fiddling with the external medium 
will make such terms vanish if we use plane-slab-shaped summation 
order. I~ Thus the fact that such terms arise in the pressure tensor, which 
measures response to shear, is not perhaps as surprising as it might first 
seem. 
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